

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Larson Systems, Inc.
13847 Aberdeen St. NE
Ham Lake, MN 55304

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document.

The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 04 February 2028

Certificate Number: AC-2847

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Larson Systems, Inc.

13847 Aberdeen St, NE
Ham Lake, MN 55304

Tyler Lakeberg 863-780-2131

CALIBRATION

ISO/IEC 17025 Accreditation Granted: **04 February 2026**

Certificate Number: **AC-2847**

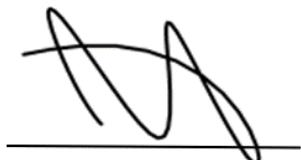
Certificate Expiry Date: **4 February 2028**

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force/Length Measurement Instrument ¹	(0 to 13) in	120 μ in	Comparison to Gage Blocks
	(13 to 25) in	320 μ in	
	(25 to 36) in	890 μ in	
	(36 to 48) in	1 200 μ in	
	(48 to 88) in	1 800 μ in	

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Measurement ¹	(2 to 250) lbf	0.013 % of reading	Comparison to Dead weight
	(250 to 1 000) lbf	0.014 % of reading	Comparison to Dead Weights w/ Fixture
	(1 000 to 11 500) lbf	0.013 % of reading	Comparison to Dead Weight w/ Fixture
	(11 to 200) lbf	0.064 lbf	Comparison to 200 lb Force Meter


Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Measurement ¹	(200 to 750) lbf	0.12 lbf	Comparison to 750 lb Force Meter
	(750 to 2 000) lbf	0.39 lbf	Comparison to 2000 lb Force Meter
	(200 to 10 000) lbf	0.035 % of reading	Comparison to 10K Force Meter
	(10 000 to 50 000) lbf	0.037 % of reading	Comparison to 50K Force Meter
Torque ¹	(0.09 to 3) lbf·in	0.052 % of Reading	Comparison to Dead Weight and Torque Arm
	(3 to 500) lbf·in	0.033 % of Reading	
	(500 to 3 120) lbf·in	0.017 % of Reading	

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 ($k=2$), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.

Jason Stine, Vice President